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ABSTRACT

We present a linear stability analysis of bow shocks created by the interaction of a
spherical wind moving with respect to its surrounding, medium. The bounding shocks are
assumed isothermal and with M ach number M == co. Following Soker (1990) we study
the evolution of short wavelength perturbations. We find that the motion is unstable in
this limit. Moreover, the ratio of the wind velocity v,, to the star velocity v, characterizes
the stability properties. Dow shocks with fast winds for which v, /vy <<1 are more stable

than bow shocks with slow winds i.c. vy /vw > 1.




1. INTRODUCTION

Bow shocks appear in a variety of astrophysical situations, but perhaps some of the
most spectacular arc those associated with “runaway” stars (Van Buren 1993). In these
systems, bow shocks develop as OB stars move supersonically through their ambient media
when their stellar winds are confined by rain pressure (Van Buren et al.  1990). The
interaction region between the wind and the circumstellar shocked gases is bounded by
two shocks in which the flows slow down from supersonic to subsonic velocities. The
width of the interaction region depends on the eflicicncy of the cooling processes as well
as on the Mach numbers of the interacting flows. For cflicient cooling the interaction zone
narrows with increasing Mach number, becoming in the limit infinitesimally thin. The
wind velocities of OB stars are ~ 1000--3000 ki s, which lead to very high post-shock
temperatures at the wind shock. A variety of cooling mechanisins are likely to operate,
among them turbulent mixing via Kelvin-Helniholz instabilities, i hermal conduction and
radiation 1o sscs, resulting in a narrow interaction region. Studies of the closely related

stellar wind bubbles indicate that strong losses cai inideed occur (Vail Buren 1 986).

In this paper we perform a linear stability aunalysis of a bow shock created by a
spherical wind interacting with a uniformly flowing interstellar medinun. We assume both
flows are isothermal with high Mach number, a situation likely to be relevant for bow
shocks around runaway stars. Similar flow conditions occur in colliding winds in relatively

close binary systems (Stevens, Blondin & Pollock 1992; Bai amov, Pilyugin & Usov 1990).

There is a whole class o astrophysical gas dynainic problems in which a stellar wind
or a supernova explosion results in the formation of a high deunsity zoue. If this zoue is thin
relative to its radius, and if it is bounded by sharp boundaries, the problem of its evolution
can be solved by t reat ing the zoiie as a surface of zero thickniess. The zero thickness shell

approximation was usecd to study the evolution of various flows both spherically symmetric




and axisymmetric (see Giuliani 1982 for references on the various application of the zero
thickness model). Soker (1990) used the zero thickness shell approximation to investigate
the stability properties of the accretion line found iu the wake of a gravitating object
embedded in a uniform flow. Dgani, Walder & Nussbaumer (1 993) and Dgani (1993),
follow Soker (1 990) and usc the same approximation o perforin a linear stability analysis
of the collision front between two identical windsin a double star system. The collision
front is unstable in this limit. Dgani & Soker (1994) follow the same instability to the
nonlinear regime using numerical simulations. They ulso compare the accretion line case,
investigated numerically by Soker (11991) to the colliding wind binary case, and find that
tile accretion line shows much stronger instability. Tlie large growth rates of disturbances
in the accretion process are due to the presence of the gravitating object. Vishniac (1994)
finds a different kind of instability occurring iuthin shells bounded by two shocks that is
both nonlinear and local (the nonlincar thin shell inst ability , hereafter NTSI). Vishniac’s
imitability is related to the shear inside the thin shell layer and and has highest growth

rates for modes with wavelength of the order of the thickness of the shell.

I this paper we perform the linear stability analysis of bow shocks in the zero thickness
shell iit. We find indeed that bow shocks are unstable in this limit. In §2 we usc Giuliani’s
formulation (Giuliani1982) of the thin shell model to derive the hydrodynamical equations.
In §3 we perform the stability analysis, obtain the dispersion relation for short wavelength
disturbances and explain the physical nature of theinstability we find. In §4 we consider
astrophysical systems where this instability inay be present. We find that the stability
properties of stellar wind bow shocks depend 011 a sinigle parameter, the ratio of’ the wind
velocity, vy, to the stellar (or moving mediumn ) velocity, v,. Bow shocks with v, Jvw << 1

. Ny
arc more stable than those with vy, v, >> 1.
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2. THE HYDRODYNAMICAL E QUATIONS

We treat the case of a zero thickness collision front in the coordinate system (7,6, ¢)
of Baranov, Krasnobaev & Kulikovskii (1971 ). The wind source is placed at the origin, r
is the distance from the origin, 19 is the angle measured fromn the positive zy-plane, and ¢
is the azimuthal augle around the z-axis (see Fig. 1). For simnplicity we assume that the

{low is independent of ¢, in other words, we consider a collision surface S of the form

S = S(r(8,1),8,¢). (2.1)
The undisturbed collision surface is

So = S(r0(0),6,¢) , (2.2)

where 7o () is given as the numerical solution of a complicated ordinary differential equa-
tion in Baranov et al. (1971). The surface arca of a surface eleinent between 6 and 6 4+ Aé
and ¢ and ¢ 4- A 1s

AS = rsindy/r2 1 12 A0AY (2.3)

where the subscript 6’ denotes the derivative with respect to 6. The tangent to the line

r(6,1)in the za planc is

Z(rgcos@ -- rsinf) + &(rgsinf + r cosf)

P - (2.4)
\/7‘9‘ + o2 ,
The normal to the line »(6, t) in the za plane is
. Z(rgsin @ + rcos @) -} £(--rgcos 0 + rsiné)
7 == '—(—... e e e e 2:2 (-i-12 __________ (2_5)
VT ’
For the undisturbed bow Shock
N Z(rf cos 8 - rgsin @) 4 (vl sinf -i "ocosd
i, _'?(_7(1 08 6 - _(_)xu‘__)j_ }(_19 sinf -i 7o cos ) 2.6)
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and
. Z(rf sin 8 + 7o cos 0) + &(—r( cos@ -i- 7o siu 6)
\/;‘62 ‘l‘ 7-2 --------- o

np = —
where the Hrime denotes the derivative with respect to 6.

(2.7)

Conservation of Mass

The change of mass in the surface element AS is a result of fluxes coming from the
wind source and from the ambient medium, as well as from matter flowing along the surface

into and out of the element.
The mass flux into AS from the source is
Tw AS = pu(r0) (v’ — U) -1t AS (2.8)

where ¢ is the velocit y of a material element on t] 1 ¢ surface. We designate the source

quantities with subscript w.
‘he mass flux into AS from the amnbient medium is
0a AS = po(ve2 4 0) 1t AS (2.9)

where p, is the density of the ambient medium andv, is the stellar velocity with respect

to the amnbient medium.
The mass flowing into AS by motion in the surface is
Dpo (T — Oy 1) - rsinAOAG (2.10)

where u, ¢ arc the surface density and the velocity at the point», €, ¢ on tile surface S.

¥ — d¢r 7 is the velocity of gas with respect to the control surface (Giuliani 1982).
The change of the mass 1 the surface clement AS with time is

(o AS) . (2.11)
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Calling ¢ the sum of the mmass fluxes from the source and from the ambient medium divided

by A8A¢, we obtain the equation for conservation of mass:
O (ar sin é \/7?, -+ 7*2) 4 Jg (0 (0 — O 7) Ir sin()) oy, (2.12)
Conservation of Momentum

The change of moment um in t he surface clement AS is a result of fluxes coming from
the source and from the ambient medium, as well as from matter flowing along the surface

into and out of the clement.

The momentuin flux into AS from the source is

Puw(r0)(Vuf - T) . 1t AS vyt . (2.13)

The moment um flux into AS from the ambient medium is

Pa(VsZ 4 0). 7t AS vy (—2). (2.14)

The momentun flowing into AS by motion along the surface is

Og(o (V-0 7). [rsinf o) ABAS . (2.15)

The change of the moment um in the surface clement AS with time is

0 (cAS 7). (2.16)

Calling P’ the vector swin of the momentum fluxes from the source and from the ambient

medium we obtain the equation of conservation of momentum:

—

O (o rsiné \ﬁz 4 77'2 6‘) 1 (o (V- Ogr 1) - [1sind v)= P (2.17)
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Following Guiliani (1982), we write the Euler equation obtained by subtracting the mass

conservation equation times ¢ from the equation of conservation of momentum and dividing

by r sin 9\/73 47r2;

T+ o(T — Oyr #) - z‘—\-/:f — gt = 7 (2,18)
P .I,_,'l‘g
where .
P60
Ro = IV (2.19)

is the force applied to the material in the surface element by f] uxcs from the wind source

and the ambient mediun, and

1 . 1 . PSR 1 /-, . R
m(’)@b = \/;_2?_7_3 (n@g(v 1) + [0g(7 l)) + jRC. (l(v ) — (T )) (2.20)

In the last equation R, is the radius of curvature of the bow shock

(r® +rg)*?

e 2.21
ri+ 27% -— I'1'gg ( )

C:'_Z

With @ = vl + v, 7o the evolution equations for vy and v, are obtained by multiplying
equation 2.18 by lo and 7ig respectively.

The Kincmatic Relation

The velocity of a material element on the bow s] iock is the total time derivative of the
coordinate of this clement (8(t), t) = ro(8(1)) + » (8(t),t). r1is the perturbation inr and

is assumed to be much smaller than ro.

df dé »
o (o AN, 0y 2.22
v (71 1 dt79>1—| T (2.22)
where 49 = (7. 8) /r. With & — vilo + vaTto the last equation gives after a little algebra:

f
7o Vio VioTh 71
Vyp == 7 i i 3, 4+ - 00 L5 T 0 (223)
’ . 12 4 2 it ol
ry A g \ﬂ'o 414 0 0

Note that 6() is a function of time because we follow a particle (Lagrangian view).
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3. THE STABILITY ANALYSIS

3.1 The Dispersion Relation

Following Soker (1990), we consider small pertui bations to the steady state solution
we designate by r = 10(0), 0 = 00(0), v; = - To = vip. Considering short wavelength
disturbances, i.c. the wavelength of the disturbancesis smaller than the other length
scales in the problem ¢ /00 etc. we use the WKB approximation (Brillouin 1926, Wentzel

1926, Kramer 1926) and write the physical quantities iu the form:

r(6,1) = r0(6) 4 Ar(8) cxp [iwi 4 ] k(l)dl]
o(0,1) = 00(6) + Ac(8) exp %wi + i/k(l)dl]

vi(8,1) = vip(0) + Avi(8) exp %m + zi/k(l)dl] (3.1)

1() is the length of the bow shock curve 7o(f),dl/df - V112 . The amplitudes of the
perturbations Ar, Ao and Av; and the wave number k are slowly varying functions of [
ou the scalelength 11 of the steady state solution, while k17 >> 1. Substituting the above
relations in the hydrodynamical equations 2.1 2, 2.18 and 2.23 while keeping only the high

order terms in k we obtain a relation between w and k
w + viok = VEb (3.2)
where b is the solution to the algebraic equation:

. 2 ; ] .
T0Y0 4 (12 4 o EI}’!Q) (1," ~ z”> - 0 (3.3)
ago Beo dl oo

arid

e (7 - o)/ O

7]:71 - (7.7‘] : 7’\1‘0)/017'1 (34)
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ri=1(8,1) — r0(0) and 7 is given in equation (2.19). Keeping only terms of highest order

ink,
Ty = (ot Ol — 0410,) (3.5)
where
Gw1 = Puw(ro)(Vw’ —-u) “(h - ), (3.6)
Ga1= pa(ve? 40) . (7 = o), (3.7)
and
7 — 7’\2,0 =P 7Al.o 817'1 io (38)

o1 anld o, 1 are the disturbances in the mass flux from the ambient mmediuin and the wind
source respectively because of the tilt in the surface. From equations (3.4) to (3.8) we see
that to highest order in k the change in the accretion of matter 1 ccause of the orientation

the bow shock surface dominates the source terms n jand, in cquation (3.3).

There are 4 roots to this cquation, 2 of them have negative imaginary part and result
in exponential growth. Since the oscillation period is of order k™ 'and is shorter than
the growth time of the perturbation ~/ the instability described by the dispersion
relation 3.2 is an overstability.

3.2 The Physical Nature of the Instability

in order to track theorigin of the instability we first note that when the radius of
curvature is large we repro duce the results obtain by Dganict al ( 1 993) for the case of
two colliding winds. Inthis case the motion normmal to the surface (transverse motion)
is independent of the motion in the direction of the surface (lonigitudinal motion). The
dispersion relation 3.2 gives two distinct, modes longit udinal and transversal. The evolution
of the longitudinal modes is governed by the relation

. (Il)lo
w A vk == A/ - thvg-—, (3.9)
dl
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which is similar to the dispersion relation for the radial modes in the planar shock (Dgani
et al. 1993 equation 24). The evolution of the transveise modes is governed by the relation

w + viok = \ﬁk?“ , (3.10)

oo

which is similar to the dispersion relation for the transverse Miodes in the planar shock
(Dgani et al. 1993 equation 31). The longitudinal 1 I odes do not depend on the sources
and their instability results from the acceleration along the undisturbed surface (Soker
1990). The dispersion relation for the transverse modes contains the source term 7, i.e.
the motion normal to the surface changes the fluxes of momentum from both sources and

results n a uct force on the clement.

As equation 3,3 shows the decoupling of the eigen modes occurs when the first term
on the RHS is zero. This term depends on the centrifugal ac.coloration. While in the
planar case changes in the surface density created motion only in the surface itself, here
the centrifugal force operates out of the surface and couples the motion in the surface to

that normal toit.

The instability described here is of a very similar nature to the colliding wind binary
instability described by Dgani et al. (1993). It arises from the fact that density fluctuations
in the bow shock surface lead to fluctuations i the transverse acceleration. When the wind
streai collides with the ainbient medium stream, the shocked slab tends to oscillate away
from the equilibrium position, accclerated outward by the oblique accretion of the streams.
We therefore nac it the transverse acceleration instability (g'Al ).

3.3 Relation to other thin shell i~t.stabilities

Our analysis assumics that the thin shell is bounded by two shocks i.e. that the wind

shock is also 1sothermal.

A set of overstabilities related to thin shells bounded on one side by a shock and
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on the! other side by a hot high pressure gas have been investigated by Vishniac (1983),
Ryu & Vishniac (1987), and Mac-LLow & Norman (1993), These instabilitics are driven by
the inability of thermal pressure (which always acts normal to the surface) to balance the
ram pressure (which is directed along the shell velocity vector). Ripples in the shell will
chive motion within the shell and concentrate matter in “valleys” (see e.g. in Mac-Low
and Norman 1993 Figure 1). T] ie ram pressure then decelerates the diluted peaks more
rapidly reversing the direction of the flow causing valleys to turn into peaks. Vishniac

(1983) showed that pcaks and valleys grow in each cycle.

If the two bow shocks around runaway stars are really confined by two isothermal
shocks, then the only other dynamical instability that is competing with the one described
here. is the NT'SI described by Vishniac (1994). The NTSI is related to shear motions in
the thin shell invoked by rippling it. Its growth rates are highest for modes of wavelength
of the order of the shell thickness and are at most onily slightly higher than ¢;k where ¢,

is the sound speed in the shell.

Following Vishmiac (1994), who compared the N'I'SI with the zero thickness colliding
wind binaries instability (Dgani et al. 1993), we compare the growth rates of the NTSI with
those of the TAL The growth rate for the TAI can be approximated as C(l)vlo(k/l)l /2 (see
below equ. 4, 1), For { < g, where 50 = 7'0(9:-0) is the stand of]' distance, vio is a lincar
function of 1 and the growth rate can be written as V(Ik)'12 /ls0, where V is the minimum
of v, and vy and lso is the stand ofl distance. The instability described here has larger
rates for A > 6lso/l where § =1, /(V/cs)? is the thickness of the shell. The last relation
means that the c.loser to the nose of the bow shock we get the longer the wavelength has
to be so that the TAT will grow faster than the NTSI. However, for 1 of the order of {so the
TAI wins for wavelengths longer than the thickness of the shell. However, since the fluid
moves from the front of the bow shock back, so that small wavelegth disturbances near the

bow evolve into large wavelegth disturbances on the sides, it scemns likely that the NTS1
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playes an important role in providing initial conditions for the TAL.

4. DISCUSSION

The instability growth rate versus vy /vy, relationship

The observed morphology along bow shock structures could be the result of the in-
stability described here. In order to apply the above analysis to real systems we consider
the approach by Dgani & Soker (1994), and follow a fluid clement as it moves along the
bow shock, The perturbation amplitude of a parcel of material flowing from [; to 1,along
the bow shock is:

[Al) - Re(iw) v 1/2 1/2
log [m] thdlrv Cllane) (/A2 = (13 /0)12) 1)

where 1, yo = (I3 + 12)/2.In the last expression we assume 12--11 <ro(6 = 0). C(I(8)) =
2Re(ib) +/271(8) /vio is a slowly varying function of I, where! bisonc of the 4 roots of
equation (3.3) , for which Re(ia) is the biggest. We substituted in the dispersion relation

(38.2) k=2x /X, where Ais the wavelength.

C(l) is an increasing function of & = v, /vy,. Bow shocks with a bigger ratio a have
higher growth rates and are therefore less stable, Infigure 2 we plot C' as a function of
log « for the angle 8 = 120°. Using equation (4. 1) and Figure 2, the amplitude growth for
a bow shock with v, /vy, = 0.01 is exp(4.3 -- 1.5) ~ 16 times smaller than that of a bow
shock with v, /vy, = 100, and is ~ 3 times smaller than that of a bow shock with vy /v, = 1

at -- 120.

Comparison with Bow Shocks

Bow shocks in astronomy are ubiquitous (Van Buren 1993), and since the ratio of
velocities « is in principle an easily measured quantity, it is interesting to consider some
astrophysical phenomena where the above process nmiay be occurring and study their be-

havior according to their different o ratio.
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Ram pressure balance between the stellar winds of runaway OB stars and the sur-
rounding gas leads to the formation of bow shocks (Van Buren & McCray 1988). Nearly
one third of the runaway stars seem to be surrounded by bow shocks due to this process
(Van Buren, Noriega-Crespo & Dgani1995). At optical wavclengths these bow shocks are
difficult to detect, due to their small column densities; however the dust trappedin the
bow shock shell re-radiates efficiently about 1% of the star’'s bolometric luminosity at far
infrared wavelengths (Van Buren 1993). Bow shocks around runaway OB stars have typi-
cally values of a between 0.01 and 0.1. As a group they should have very similar stability

propert ics.

In Fig 3, we show a contour map of the bow shock associated with ‘the runaway star ¢
Oph (O9V, HD 149757) , based outhe IRAS HIRES 60 jum image, which covers ~ 20 x 30
arc minutes in the sky. This object is at a distance of ~ 150 pc, with a terminal wind
velocity vy ~ 1350 km s~ ! (Morton 1976), and a star velocity of v, ~ 30 km S’](Gull

&Sofia 1979), i.e. a= 0.02.

It is diflicult to find values of « > 1 in most traditional stellar-ISM environments,
nevertheless there mist a beautiful example ucar the Galactic center: the galactic center
IRS 7 source (Yuscf-Zadceh & Melia 1992). IRS 7 is a red supergiant located within 2 pe
of the Galactic center (Sellgren et al. 1987) which shows a bow shock with its apex facing
IRS 16 (a likely cluster of OB stars situated cven closer to the Galactic center). In Fig 4
we shiow a contour map of 2 cm radio cont inuum of t h e IRS 7 bow shock {rom Yusef- Zadch
& Melia (1992). Its width at 8 ~90°is ~ 0.” 34 and the map covers all area ~ 1.“5x 1 .45

on tile sky.

The bow shock arises in this case from the interaction of the red supergiant wind,
vy ~ 30 ki s'-, with the IRS 16 wind “ v,” =~ 500 - 700 km s ° Yusg-d‘— Zadeh & Melia

1992), i.e. a= 16- 23. The IRS 7 bow shock displays a more clumpy structure than ¢




Oph, in accordance with its higher a and hence higher expected perturbation amplitude

(See figure 2).
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FIGURE CAPTIONS

Figure 1. The coordinate system is shown.

Figure 2. Diagram of the relationship between the instability growth rate, C(1), versus
the star-wind velocity ratio . The position for three different bow shocks with distinct «

values (¢ Ophand IRS 7) are marked.

Figure 3. A contour plot based ona high resolution 60;m 1 RAS image of ( Oph (HD
149757). The motion of the star is along a ~ 18° position angle, with a velocity of ~ 25
km s71. The field is ~ 30’ x 20, north is up, cast is left, tile contour levels are spaced a

2! /2 factor, and the cross marks the position of the star.

Figure 4. A contour map based continuum obses vations at a 2 cm wavelength of the

IRS 7 bow shock in the Galactic. center (fromn Yusef-Zadeh & Melia 1992). The field is

"

~1.5x1,"5,and the contours are linearly space (sce text for details).
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